
N94-2232

Software Metrics - The Key to Quality Software

on the NCC Project

Patricia J. Burns

Computer Sciences Corporation

10110 Aerospace Road Seabrook, Maryland

301.794.1640 (o) 301.552.3272 (fax)

SUMMARY

Network Control Center (NCC) Project metrics are captured during the implementation and

testing phases of the NCCDS software development lifecycle. The metrics data collection and

reporting function has interfaces with all elements of the NCC project. Close collaboration

with all project elements has resulted in the development of a defined and repeatable set of

metrics processes. The resulting data are used to plan and monitor release activities on a

weekly basis. The use of graphical outputs facilitates the interpretation of progress and status.

The successful application of metrics throughout the NCC project has been instrumental in the

delivery of quality software. The use of metrics on the NCC Project supports the needs of the

technical and managerial staff. This paper describes the project, the functions supported by

metrics, the data that are collected and reported, how the data are used, and the improvements

in the quality of deliverable software since the metrics processes and products have been in

use.

NCC PROJECT OVERVIEW

The NCC is an element of the National Aeronautics and Space Administration (NASA)

Spaceflight Tracking and Data Network (STDN). The STDN is a worldwide complex designed

to provide tracking and data acquisition support to manned and unmanned spacecraft in low-

earth orbit. It is composed of the Space Network (SN) and the Ground Network (GN). The

STDN has evolved into a network that currently uses the Tracking and Data Relay Satellite

System (TDRSS) as the primary source of support for orbiting spacecraft. The NCC Project

Office, Goddard Spaceflight Center (GSFC) Code 530, is responsible for the support and

maintenance of the current NCC Data System (NCCDS). The NCCDS performs network

scheduling, acquisition and tracking support, data quality assurance, performance monitoring,

and overall coordination of the STDN.

The NCCDS is maintained by the NCC Project within the Computer Sciences

Corporation (CSC) System Sciences Division (SSD) Networks Technology Group (NTG).

The maintenance and enhancement of the NCCDS is performed as part of the System

pRliOID4Ne PAGE BLANK NOT FM..MID

27

Engineering and Analysis Support (SEAS) contract. These responsibilities have been

distributed among several tasks: Software Development, Software Maintenance, Integration

Test, System Test, System Engineering, Metrics, Configuration Management, and Product

Assurance.

NCC SOFTWARE METRICS DEFINED

On the NCC Project, the metrics program consists of defined, documented processes

and measurement tools that provide a quantitative and qualitative representation of the status

of a software build or release. Data items including measures of quantity, scheduled and actual

progress, number of iterations, and defect information are collected, stored, and reported

weekly to provide a snapshot of progress and work yet to be accomplished. All of the tools

described in this paper are implemented using a spreadsheet on a 386 or 486 compatible

personal computer. The effort expended on project metrics task activities has varied. At peak

staffing of the NCC project, 3 full-time analysts were assigned to the metrics activity.

METRICS IN NCCDS SOFTWARE LIFECYCLE

The NCC metrics task originated coincident with the software development activity at

the outset of the NCCDS upgrade to support the Second TDRSS Ground Terminal (STGT).

It remains a responsibility of the Software Development Department. While the bulk of the

data collected and reported by metrics is related to software development, the integration test,

system test, and software maintenance tasks are also primary metrics customers. Other project

tasks utilize metrics data as an ancillary function.

The phases of the NCCDS software development lifecycle are illustrated in Figure 1.

The major phases of the lifecycle are requirements identification, design and implementation,

and testing. The testing phase is subdivided into integration, system and acceptance testing

activities. Each of these phases of testing is performed by a different test group. Milestones

that hallmark the software development lifecycle are: system requirements review (SRR),

preliminary design review (PDR), critical design review (CDR), integration test readiness

review (ITRR), system test readiness review (STRR), acceptance test readiness review (ATRR),

and the operations readiness review (ORR). The metrics group provides active support during

the design and implementation phase, the integration test phase, and the system test phase.

28

SRR ITRR STRR

SYSTEM t

REQUIRE-

MENTS
DEFINITION

DESIGN AND IMPLEMENTATION
INTEGRATION

TESTING

SYSTEM
TESTING

ATRR ORR

OPERATION
ACCEPTANCE AND

TESTING MAINTENANCE

/ \
/ \

/ '1I I
PRELIMINARY I DETAILED I IM_EMENTA-

DESIGN DESIGN TION

1 I

PDR CDR

Figure 1. NCCDS Software Development Lifecycle

The lifecycle for NCCDS software maintenance, illustrated in Figure 2, differs slightly

from the above. The major phases can be defined as contents definition, problem resolution

and implementation, and testing. The initial phase in the maintenance lifecycle is defined as

contents definition as opposed to requirements identification as contents are generally not major

system enhancements. They are predominantly fixes to anomalies reported during operational

use that have been scheduled for a particular maintenance release. Milestones that hallmark

the maintenance]ifecycle are an official contents letter, followed by the test readiness reviews

listed above. Formal reviews such as SRR, PDR, and CDR are not included in the software

maintenance lifecycle.

CONTENTS iTRR STRR

CC*NTENTS I PROBLEM RESOLUTION AN_I I INTC:G_AT1ON I_ '2":'E'°2__1"'°

ATRR ORR

S,STEM,=.,',N_. O'X_"SITESTING 'TESTING MAINTENANCE

Figure 2. NCCDS Software Maintenance Lifecycle

29

METRICS DATA COLLECTION AND REPORTING

When using metrics to support software implementation and testing, the objective is to

establish a baseline plan for the work to be done, and then perform work according to the plan.

Generally, this approach is the same for development, maintenance and testing with slight

variations according to the nature of the task being supported. Data flow between

development and maintenance customers and the metrics group is illustrated in Figure 3.

DEVELOPMENT

_lopn_n_

s4::heOule
MAINTENANCE,/ _tti

DEVELOPMENT/PAO

da_

MAINTENANCE

_lbnte_e

METRICS

INTEGRATION/
SYSTEM TEST

Figure 3. Data Flow - Development, Maintenance and Metrics

30

Development and Maintenance Support: Implementation Phase

The primary products produced by Metrics during a development or maintenance

software implementation are schedules, plots, and points summaries. To begin the process of

metrics support of a build or release, both the development and the maintenance organizations

must submit lists of the items (units, displays, etc) that are planned for change in the build or

release along with an estimate of the size of each item in delivered source instructions (DSI).

Development items are identified according to the computer software configuration item and

software component (CSCI and SC) along with the item name, and the anticipated impact of

the change (a percentage of the DSI.) Maintenance items are identified according to the

problem report number, or some other form identifier, along with the item name. This

information is used to build an Implementation Schedule spreadsheet. A sample portion of a

development implementation schedule is shown in Figure 5 below.

Figure 5. Development Implementation Schedule

31

Included are estimated dates for the design, code and test certification of each item on the

schedule. The certification process is defined by the SEAS Software System Development

Methodology (SSDM) to record completion of the design, code and test of items in a build or

release. Weekly, as the actual certifications are completed, the completion dates are added to

the implementation schedule. Design, Code and Test Plots are generated that contrast the

planned certification progress against the actual certification progress. Each of these graphs

also shows growth in the total number of items to be certified. Sample design, code and test

plots are shown in Figure 6.

25O

to 2O0

150

0
5O

140

'i

292 41--CCS RELEASE 3 BUILD 1

4/1B 4/'30 5/14

-1-] :-I

3

DESIGN - 9/8/93

I

7 9 1t 13 _5 t?

WEEKS

292 41--CCS RELEASE 3 BUILD 1

4il8 4_iD

T(

t

r--
/

CODE - 9/8/93

4 5! .e,,!l.e,?z_ t__ t,'2___

I I "

I

WEEKS

;tl
.......... 11

-- tlt
",; _7 ,o 2, 23

I _ s_,_._ ;. _,_u..... -:*i_.,-;,_- i

120

_ _0
O

2O

292 41--CCS RELEASE 3 BUILD 1
TEST - 9/8/93

i

_AL S ZE

il

3 _

.#

WEEKS

I
|---t_

1 •
1S _7

1.1
ca Schetlt_ _ Actu,'_l Ba$_hne--

Figure 6. Design.Code and Test Plots

32

Lastly, a tally of Points, Figure 7, is calculated based on the total items to complete and the

total completed. Points indicate the amount of credit that can be taken towards the completion

of the activity. A different number of points are assigned to each activity - design, code, and

test certification - by management. As the size of a build or release grows so does the number

of total points. This is reflected in the difference between baseline size and current size, and

the points added. Points are calculated weekly and included in the implementation schedule

data summary. Each of these products, the schedule, plots, and points summary supports the

timely delivery of quality software by providing detailed and high-level feedback on progress

and remaining work.

3329241

Or_,r'all Sterl Dale: 04116/93

0¢_g1¢_111E_¢I Date: 09/_4193

Plolec:led Ena Dale: 09/'_4,/$3

N=mbet of weeks elapsed 15 0

Weeks lo Otlg_.&t End 9 0

Weeks 10 Ptojecled End; 9 0

Estimated Size

Rasehno

Percen

Cur+enl Glowl

DESIGN 113 1111

TEST PLAN 113 I1B

CODE 190 202

TEST 113 118

M¢KlU_$ TeSl 0 0

spe_e 3 0 0

spars 2 0 0

spar* I 0 O

Total poanl$ 1436 1516

Act,vt_y POI/_It

DESIGN 4

TE ST PLAN 0

CODE 4

TEST 2

M o¢l_le Test 0

spare 3 0

Spare 2 0

sp4_e 1 0

Total 10

SUMMARY DATA at ol 07/23/93

I Compleled I

11 I

h I Number Percen I I

4 % 100 85 %J

4 % 89 75 %1

6 % 1B4 91% J

4 % 48 41%1

NA % 0 NA %1

NA % 0 NA % 1

NA % 0 NA % I

NA % 0 NA %1

5 % 1232 81% J

FISCAL MONTH POINT SUMMAR

Monlh Planned Completed

APR 176 3041

MAY 314 454

JUN 636 336

JUt. 306 108

AUG 84 0

SEP o 0

TOTAL 1515 1232

Yet To Complete J

I
Number Petcenl l

1B 15 %]

29 25 %

18 g %

70 5g %

0 NA %

0 NA %

0 NA %

0 NA %

211,4 19 %

cuMULATIVE

Ptl_,ed petcerd

To Be Ahead o4

Complete Plan

116 .15

11 $ -25

194 -S

92 48

0 NA

0 NA

0 NA

0 NA

1432 .14

POINTS

Pl&nned Corrt pleiad % Added

176 304 73% O

490 768 81% 30

1126 1124 -0% 24

1432 1232 -14% 24

1516 0 0% 0

0 0 0% 0

78

Figure 7. Development Points Summary

33

Development and Maintenance Support: Testing Phase

At the completion of an implementation phase, the build or release baseline is delivered

to Configuration Management (CM) through the Product Assurance Office (PAO) to be placed

under configuration control. Once a build or release has been placed under CM control,

changes made to the baseline are tracked through the problem reporting system defined in the

NCC Standards and Procedures.

The implementation schedule used to account for all items planned for the build or

release is now revised to become the Schedule Update. The schedule update is used to track

the impact of problem report changes on specific items in a build or release as it progresses

through testing. The impacting problem report, recertification information, new DSI counts,

and variance in the weighted amount of change are recorded on the schedule update. By

referencing the schedule update, management and technical staff can identify which software

components are being impacted by problem reports and determine if additional build or release

items require attention. An enhancement for cross-checking between different builds and

releases is the recently developed data summary, the Multiple Baseline Compare. The compare

shows which software items are being updated simultaneously for different builds or releases.

This information is critical in the NCCDS development and maintenance environment to insure

the integrity of software products. Implementation activities for different builds and releases

sometimes proceed in parallel, requiring that each baseline be updated separately, but yet

remain consistent with each other. For exan_ple, although a development build may be initiated

before a maintenance release, the full development release may not be delivered to the

customer until after delivery of the maintenance release. All changes made in the maintenance

release must also be present in the superseding development release. The compare report

makes the development and maintenance programming staff aware of the need to merge

changes from one implementation effort into others as applicable, thus preventing the loss of

upgrades and fixes from one baseline to another.

Integration and System Test Metrics Support

There are two levels of testing performed by NCC project staff against each software

build or release - integration testing and system testing. The data flow between the test groups

and the metrics group is illustrated in Figure 8.

34

INTEGRATION TEST
test

I / schedule
Test I/ data

Planning r "_ik. METRICS I /

Data I _ _ I lntegrati, II1

/ I Test
...J Test Schedules I ""----_ I Sche,_o,

/ IN_ _ I P°int

/ Z __ I Somma,
test / \

schedule / \ \
SVSTE.TEST data / \ .A

J lOg data _- r"
/ nos. items _

Test J _ l _ System
Planning / I 1 _ Test
Da,-/ / I Sched,,,e,

/ " " Plots, and

i I ' ' o,n,and System J and System J Summary

Problem I Test I "¢

Reports ICertifications I

Figure 8. Data Flow - Test and Metrics

As previously stated, at the start of testing the baseline is put under CM control. During

integration testing all problems found in the build or release are documented on Integration

Software Problem Reports (ISPRs). During system testing, all problems are documented on

Software Problem Reports (SPRs). The differentiation distinguishes the test phase in which

a problem was found in a build or release.

Similar to the development and maintenance implementation activities, three basic

products are provided in support of integration testing and system testing: a schedule of test

activities, plots of the progress, and points summary data. Before the start of integration and

system test, the integration or system test group provides information on the test cases that will

be run against the build or release. Both test groups provide an itemized list with titles and

numbers of each test to be run, along with the corresponding CSCI or release requirement.

Also provided is additional information including scheduled dates for the start and/or

completion of each test, the staff members responsible for each test, and the number of points

to be allocated to each test. The use of these tools supports testers and test managers by

facilitating the planning of resource allocation for specific tests, identifying problem reports

35

that are impacting test caseprogress,and providing weekly feedbackon progress. The

information collectedalso helps identify wheretest proceduresare lacking the depthneeded

to throughly test the software.

BENEFITS OF THE NCC METRICS DATA COLLECTION ACTIVITY

NCC metrics reporting makesproject statusaccessible,traceable,and concise. The

metrics processes and tools are simple, yet flexible enough to accommodate the specific needs

of different managers; the outputs can easily be tailored to each group's needs. Additionally,

the use of a project-wide metrics data collection and reporting activity provides an excellent

source of information for defect causal analysis. Based on three years of practice, the benefits

of the NCC metrics activity can be summarized into three major categories: Planning,

Monitoring and Control, and Defect Causal Analysis.

Planning

From the management perspective, the initial and updated schedules provided by the

metrics group identify work to be accomplished, in detail, before the start of the effort, for both

implementation and testing. Managers are able to establish guidelines for the work to be

accomplished during the scheduled interval of time. When used for planning, the

implementation and test schedules indicate the concentration of items to be accomplished by

date and by functional area. The distribution of staff resources can be mapped and then

adjusted as necessary. The use of detailed schedules facilitates the formulation of a workable

and realistic plan. From the technical perspective, once the schedules are established they are

made available for reference. The plan of action is clear not only to management, but also to

those directly responsible for accomplishing the work. Individuals can formulate their own

plan for accomplishing work for which they are responsible. Making the schedules available

to technical staff also facilitates communication. Each person knows who is responsible for

specific items, therefore questions and information can be directed appropriately.

Monitoring and Control

Each manager involved in the completion of an NCC software build or release is

required to plan his or her work. Therefore, it is also incumbent upon the managers to

compare their planned activities to the progress being made. The points summary and the plots

provide at-a-glance feedback on planned versus actual progress. This assists managers in

36

preparingfor monthly statusreviews. Metrics reportsprovideaccessto historical datathat is

usedas a basisfor planning future softwareimplementations.

The regular distribution of metrics reports allows managersand technical staff to

identify potential problemsasthey aredeveloping. It is possibleto apply a mitigation action

before a problem grows in magnitude. The continuousdata capture and reporting cycles

facilitate the monitoring and control effort and direct managersto specific areasof concern.

Metrics processestrack the progressof the implementationdown to the unit level. Items that

are significantly behind scheduleare flagged for further investigation. Similarly, during

problem resolution, the progressof test casesand of problem resolution is closely tracked

throughthe datacollection andreportingprocess.The progressof all activities - development,

testing and problemresolution - are tied to points summariesand plots. Thereforethereare

severallevelsat which information is reported. Plots illustrateprogress,andpoints summaries

numerically representtheprogressandprovide thebasisfor taking credit for accomplishments

on a monthly basis. The schedulescontainthe detailedinformation neededby line managers

and task leaders.

Defect Causal Analysis

An important initiative in the SEAS program is the defect causal analysis of software

implementation and testing efforts. The NCC Project developed a DCA procedure based on

data collected by the metrics task, and additional analysis provided by the technical staff. The

metrics group provides key data collection and reporting DCA on the NCC project.

In addition to the three basic products already described, the initiation and resolution

of ISPRs and SPRs is monitored using the Detailed Defect Causal Analysis (DCA) Listing.

This spreadsheet and associated plots contain information such as when a problem report was

written, the affected NCCDS segment, the manager or task leader assigned to analyze and

resolve the problem, and data items that characterize the problem resolution. To aid in DCA,

plots are generated that illustrate the characteristics of the problem report resolutions applied

to a build or release. When performing DCA of each build or release, it is often helpful to

make comparisons of the results against previous build or release statistics. Metrics reports

draw attention to areas that are consistently at risk in each subsequent build or release. Results

are fed into the subsequent planning process in order to formulate risk mitigation approaches.

37

An analysis of Release 92.1 statistics by the metrics and development groups for the

Service Planning Segment (SPS) of the NCCDS showed that for software items against which

formal reviews were conducted by development during the design and code of the release, no

software changes were necessary in integration or system testing. As a result of these findings,

the SPS group has enhanced its internal review procedures.

PROCESS IMPROVEMENT YIELDS QUALITY IMPROVEMENT

The effect of the project metrics activity on the quality of the NCCDS software is best

illustrated in the following chart, Figure 9, that compares size and incidence of errors for four

recent NCCDS Releases. Release 90.1 and Release 91.1, software maintenance releases, were

implemented and tested prior to the start of the NCC Metrics activity. The metrics activity was

initiated with the first build of Release 92.1, a two build software development release. The

first maintenance activity to be included in the NCCDS system of metrics was Release 93.1.

On this chart, SPRs are software problem reports written by the NCCDS Project before

delivery to the customer, STRs are system trouble reports written by the GFSC acceptance test

team. The statistics show that since the advent of the NCC metrics system

development Release 92.1, with the largest number of delivered source instructions, has

the lowest overall error rate, and

maintenance Release 93.1, at almost twice the size of Release 91.1, was delivered with

half as many total SPRs and STRs.

Release Identifier 90.1 (Maint) 91.1 (Maint) 92.1 (Dev) 93.1 (Maint)
Before Metrics Before Metrics After Metrics After Metrics

Release Size (DSI) 7925 18308 112115 36041

Total SPRs Reported 31 135 221 155

Total STRs Reported 15 34 92 25

SPR Errors/KDSI 3.91 7.37 1.97 4.30

STR Errors/KDSI 1.89 1.85 0.82 0.69

Figure 9. Release Size and Error Rate Comparison

38

Since the system of metrics data collection and reporting has been in use, the rate of errors per

thousand DSI has decreased. Collecting defect-related statistics on the schedule update report,

the testing schdules and plots, and on the detailed DCA listing has helped to focus attention

on critical areas of the software baseline, this has aided in the resolution of problems and the

unmasking of additional problems before delivery to the customer. Also, by using the

schedules, plots and points summaries to navigate development and test efforts, the NCC

Project has met the majority of its internal milestones, and made all of its scheduled deliveries

to the customer on time.

SUMMARY

The goal of the NCC Project metrics activity has been to support the project processes

and procedures in order that each build or release be delivered on schedule and reflective of

high quality. Consistent with this goal, the objectives to be met are to establish plans, monitor

the progress according to the plan, and utilize the feedback to effectively manage progress,

growth and change during the implementation and test phases. In addition to the above

benefits of the metrics data collection and reporting processes, data have been used in the

development of Baseline History Reports, and as evidence in internal, division level, and GSFC

process audits. Models of the NCC Metrics plan have been used in contract proposals to

outline a method for supporting the software development lifecycle.

Comparisons of NCCDS release histories, and the increased level of customer

satisfaction have proven that the use of simple tools to support management and technical staff,

as described in this paper, have had a measurable effect on the ability of the NCC project to

deliver high quality, error-free builds and releases.

REFERENCES

,

2.

,

4.

5.

6.

Computer Sciences Corporation, SEAS Software Development Methodology (SSDM)

__., Network Control Center Data System _CCDS) Metrics Handbook, Draft,

September 1993

_., NCC Standards and Procedures, Revision 7, March 1993

_., Release 90.1 Baseline History Report, February 1991

__., Release 91.1 Baseline History Report, January, 1992

_ Release 92.1 Baseline History Report, February 1993

39

